GENE THERAPY FOR HAEMOPHILIA

Authors

  • A Asghar Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • Z Asjad Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • H Tahir Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • Z Maheen Institute of Molecular Biology & Biotechnology, University of Lahore, Lahore, Pakistan
  • S Hanif Emergency Department, Bahria Town International Hospital Lahore-Pakistan

DOI:

https://doi.org/10.54112/pjicm.v2021i1.6

Keywords:

haemophilia, gene therapy, lentiviral, retroviral, vaccine, drug

Abstract

The blood disorder, Hemophilia, has its roots embedded deep into the history of genetic disorders. The European royal family is one of the most prominent families to be affected by this disease thus, dubbing it 'the royal disease'. The types of Hemophilia are divided into two based on the type of coagulation factor mutation found in the patient. For treating haemophilia, gene therapy is done by using different vectors such as lentiviral and retroviral vectors but due to the production of limited expression different adeno associated virus (AAV) strains are used. Some engineerly modified vectors are currently used to get the best possible results. The clinical trials prove the efficacy of these vectors so through their obtained statistical consideration, patient experience and population study once can design vaccines and drugs for haemophilia patients but also due to pre-existing Nabs and pre-existing HCV or HBV infection, the general application of AAV gene therapy is currently limited. The possibility of gene editing for the repair of the mutation is on the horizon.

References

Aledort, L. M. (2007). History of Haemophilia. Haemophilia, 13, 1-2.

Arruda, V. R., Stedman, H. H., Haurigot, V., Buchlis, G., Baila, S., Favaro, P., & High, K. A. (2010). Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B. Blood, The Journal of the American Society of Hematology, 115(23), 4678-4688.

Belvini, D., Salviato, R., Radossi, P., Pierobon, F., Mori, P., Castaldo, G., ... & AICE HB study group. (2005). Molecular genotyping of the Italian cohort of patients with hemophilia B. Haematologica, 90(5), 635-642.

Bowen, D. J. (2002). Haemophilia A and haemophilia B: molecular insights. Molecular Pathology, 55(2), 127.

Brown, B. D., Cantore, A., Annoni, A., Sergi, L. S., Lombardo, A., Della Valle, P., ... & Naldini, L. (2007). A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood, The Journal of the American Society of Hematology, 110(13), 4144-4152.

Calcedo, R., Morizono, H., Wang, L., et al. (2011). Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol, 18: 1586–1588.

Charlesworth, C. T., Deshpande, P. S., Dever, D. P., Camarena, J., Lemgart, V. T., Cromer, M. K., ... & Porteus, M. H. (2019). Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature Medicine, 25(2), 249-254.

Chuah, M. K., Evens, H., & VandenDriessche, T. (2013). Gene therapy for hemophilia. Journal of thrombosis and haemostasis, 11, 99-110.

Corti, M., Elder, M., Falk, D., et al. (2014). B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study. Mol Ther Methods Clin Dev, 1: 33.

Crudele, J.M,. Finn, J.D., Siner, J.I., et al. (2015). AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in haemophilia B dogs and mice. Blood, 125: 1553–1561.

Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., & Liu, B. (2002). Microglial activation‐mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. Journal of neurochemistry, 81(6), 1285-1297.

Gater, A., Thomson, T. A., & Strandberg-Larsen, M. (2011). Haemophilia B: impact on patients and economic burden of disease. Thrombosis and haemostasis, 106(09), 398-404.

Guidance for Industry: Providing Clinical Evidence of Effectiveness for Human Drugand Biological Products, May 1998. https://www.fda.gov/media/71655/download

Guidance of industry: Human gene therapy for haemophilia, January 2020. Human Gene Therapy for Haemophilia; Guidance for Industry (fda.gov)

Hay, C. R., Brown, S., Collins, P. W., Keeling, D. M., & Liesner, R. (2006). The diagnosis and management of factor VIII and IX inhibitors: a guideline from the United Kingdom Haemophilia Centre Doctors Organisation. British journal of haematology, 133(6), 591-605.

Hay, C.R., DiMichele, D.M (2012). International Immune Tolerance Study. The principal results of the International Immune Tolerance Study: a randomized dose comparison. Blood , 119: 1335–1344.

Herzog, R. W., Yang, E. Y., Couto, L. B., Hagstrom, J. N., Elwell, D., Fields, P. A., ... & High, K. A. (1999). Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nature Medicine, 5(1), 56-63.

In Vitro Companion Diagnostic Devices: Guidance for Industry and Food and Drug Administration Staff, August 2014. https://www.fda.gov/media/81309/download

Jiang, H., Lillicrap, D., Patarroyo-White, S., Liu, T., Qian, X., Scallan, C.D., Powell, S., Keller, T., McMurray, M., Labelle, A., Nagy, D., Vargas, J.A., Zhou, S., Couto, L.B., Pierce, G.F. (2006). Multiyear thera- peutic benefit of AAV serotypes 2, 6, and 8 delivering fac- tor VIII to haemophilia A mice and dogs. Blood, 108: 107–15.

Long Term Follow-Up After Administration of Human Gene Therapy Products:Guidance for Industry, January 2020. https://www.fda.gov/media/71655/download

Mátrai, J., Cantore, A., Bartholomae, C. C., Annoni, A., Wang, W., Acosta‐Sanchez, A., ... & Naldini, L. (2011). Hepatocyte‐targeted expression by integrase‐defective lentiviral vectors induces antigen‐specific tolerance in mice with low genotoxic risk. Hepatology, 53(5), 1696-1707.

Mátrai, J., Chuah, M. K., & VandenDriessche, T. (2010). Preclinical and clinical progress in hemophilia gene therapy. Current opinion in hematology, 17(5), 387-392.

Mazepa, M.A., Monahan, P.E., Baker, J.R., et al. (2016). Men with severe haemophilia in the United States: birth cohort analysis of a large national database. Blood, 127: 3073–3081.

McCarty, D. M., Fu, H., Monahan, P. E., Toulson, C. E., Naik, P., & Samulski, R. J. (2003). Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene therapy, 10(26), 2112-2118.

Miller, C.H., Benson, J., Ellingsen, D., et al. (2012). F8 and F9 mutations in US haemophilia patients: correlation with history of inhibitor and race/ethnicity. Haemophilia, 18: 375–382.

Mingozzi, F., Liu, Y. L., Dobrzynski, E., Kaufhold, A., Liu, J. H., Wang, Y., ... & Herzog, R. W. (2003). Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. The Journal of clinical investigation, 111(9), 1347-1356.

Nakade, S., Tsubota, T., Sakane, Y., Kume, S., Sakamoto, N., Obara, M., et al. (2014). Microhomology- mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nature Communication, 5:5560.

Nathwani, A. C., Davidoff, A. M., & Tuddenham, E. (2017). Gene Therapy for Haemophilia. Hematology/oncology clinics of North America, 31(5), 853–868.

Nathwani, A. C., Davidoff, A. M., & Tuddenham, E. G. D. (2004). Prospects for gene therapy of haemophilia. Haemophilia, 10(4), 309-318.

Non-Inferiority Clinical Trials to Establish Effectiveness; Guidance for Industry,November 2016. https://www.fda.gov/media/78504/download

Otto, J. S., Sánchez, M. A., Rula, J. P., & Bustamante, F. E. (2012, November). Content delivery and the natural evolution of DNS: remote dns trends, performance issues and alternative solutions. In Proceedings of the 2012 Internet Measurement Conference (pp. 523-536).

Puente, X. S., Sánchez, L. M., Overall, C. M., & López-Otín, C. (2003). Human and mouse proteases: a comparative genomic approach. Nature Reviews Genetics, 4(7), 544-558.

Schramm, W. (2014). The history of haemophilia–a short review. Thrombosis research, 134, S4-S9.

Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E. J., ... & Belmonte, J. C. I. (2016). In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 540(7631), 144-149.

VandenDriessche, T., Vanslembrouck, V., Goovaerts, I., Zwinnen, H., Vanderhaeghen, M. L., Collen, D., & Chuah, M. K. (1999). Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proceedings of the National Academy of Sciences, 96(18), 10379-10384.

Zhong, L., Li, B., Mah, C.S., Govindasamy, L., Agbandje-McKenna, M., Cooper, M., Herzog, R.W., Zolotukhin, I., Warrington, K.H., Jr, Weigel-Van, Aken, K.A., Hobbs, J.A., Zolotukhin, S., Muzyczka, N., Srivastava, A. (2008). Next generation of adeno-associated virus 2 vec- tors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proceedings of National Academy of Sciences USA 105:7827–32.

Downloads

Published

2021-06-23

How to Cite

Asghar, A., Asjad, Z., Tahir, H., Maheen, Z., & Hanif, S. (2021). GENE THERAPY FOR HAEMOPHILIA. Pakistan Journal of Intensive Care Medicine, 2021(1), 6. https://doi.org/10.54112/pjicm.v2021i1.6

Issue

Section

Review Articles